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Pulse propagation effects in a cyclotron resonance maser amplifier

P. Aitken, B. W. J. McNeil, G. R. M. Robb, and A. D. R. Phelps
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland

~Received 18 June 1998!

An analysis is presented of a cyclotron resonance maser amplifier operating with electron pulses. The
electrons are resonant at two frequencies of the same waveguide mode. We consider both a single resonant
frequency interaction and also a coupled two resonant frequency interaction. It is shown that, in general, the
interaction with both resonant frequencies must be taken into account. The analysis includes propagation
effects due to the difference between the axial velocity of the electrons and the group velocities of the radiation
fields. Both linear and numerical solutions to the equations are given, and superradiant emission is demon-
strated where the radiated power scales as the square of the electron pulse current. Two methods of low-
frequency suppression are presented allowing the high-frequency emission to dominate. These results may
have important consequences for the generation of short pulses of high-frequency, high-power microwave
radiation.@S1063-651X~99!01001-6#

PACS number~s!: 41.60.2m, 52.75.Ms, 84.40.Ik
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I. INTRODUCTION

Cyclotron resonance masers~CRMs! are important
sources of coherent high-power microwave radiation. T
radiation source of the CRM is a relativistic electron be
gyrating as it propagates along a uniform magnetic field,
the radiation emitted by the electrons is usually contain
within a cylindrical waveguide structure. When the electro
interact with either their spontaneous radiation, or with
injected signal, a collective instability may bunch the ele
trons in the phase angle of the electron gyration, or the a
electron position, or both. The bunched electrons may t
emit coherently. The collective instability may give an exp
nential growth of the radiation field until saturation, whe
free energy depletion@1# of the electron beam and/or
dephasing of the electron bunching occurs. In general, f
single waveguide mode, there exist two distinct resonant
quencies. In most circumstances it is the lower resonant
quency that has the larger growth rate and dominates
exchange of energy from the electrons to the radiation fi
The electron source for the CRM is usually of a durati
which is much greater than both the resonant radiation pe
and the time of flight of a typical electron through the inte
action region@2–5#. Considerable mathematical analysis h
therefore been carried out, assuming interaction at a si
resonant frequency only, and using the ‘‘steady state’’
proximation, which assumes a uniform current electron be
of infinite duration@1,5–15#.

More recently, an analysis of the steady state ampli
interaction allowing both the lower and higher resonant f
quency fields to evolve has shown that it is possible to s
press the evolution of the lower frequency instability@16#,
possibly allowing the CRM to operate at the higher fr
quency only. When the steady state approximation is
valid, the relative propagation of the electron pulse with
spect to the radiation emitted becomes important, and m
give rise to new regimes of operation. With the advances
accelerator technology@17–20#, pulse dominated CRM op
eration is now possible with ultrashort pulse durations of
order of the radiation period being feasible@21#. The pulsed
PRE 591063-651X/99/59~1!/1152~15!/$15.00
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‘‘superradiant’’ regime, where the radiation power emitt
scales as the square of the electron current, is of partic
interest@22,23#, and has many conceptual similarities wi
superradiant behavior in free electron lasers@24–26#. Super-
radiant emission offers a possible method of generating v
short high-power pulses of microwave radiation.

In this paper we present results arising from a detai
analytical and numerical investigation of CRMs operating
this pulsed amplifier regime. Clearly the fact that pulses
radiation are generated increases the frequency bandw
when compared with that of the steady state regime. T
analysis is first performed for a single resonant freque
interaction, and then for simultaneous interaction at
lower and higher resonant frequencies. In both cases su
radiant emission from the electron pulses is demonstra
and it is shown that, in general, the coupled interaction w
both resonant frequencies must be taken into account. In
dition, two methods of suppressing the lower resonant
quency are presented. These results may have important
sequences for the generation of short pulses of hi
frequency, high-power microwave radiation.

The resonant frequencies of the CRM interaction may
determined by the intersection of the waveguide and be
modes as defined by

v25vc
21ki

2c2, ~1!

v5vH1kiv i , ~2!

respectively, wherevc is the waveguide cutoff frequency,ki
is the axial component of the radiation wave vector,vH is
the relativistic cyclotron frequency andv i is the axial veloc-
ity of the electrons. A typical dispersion diagram in Fig. 1~a!
shows the intersections at the two resonant frequencies.
radiation at the higher resonant frequency has an axial gr
velocity (vg5]v/]ki) greater than that of the lower reso
nant frequency, and so these resonant modes are defin
being the ‘‘fast’’ and ‘‘slow’’ resonant modes, respectivel
1152 ©1999 The American Physical Society
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PRE 59 1153PULSE PROPAGATION EFFECTS IN A CYCLOTRON . . .
Solving Eqs.~1! and~2!, we obtain solutions for the fast an
slow mode resonant frequencies and their correspon
axial wave vectors:

v f ,s5vH

16b iA12X

12b i
2

, ~3!

ki f ,s5
vH

c

b i6A12X

12b i
2

, ~4!

where the ‘‘waveguide parameter’’X5vc
2/(vH

2 g i
2), b i

5v i /c, g i5(12b i
2)21/2 and subscriptsf ands indicate the

fast and slow modes, respectively. In this paper we cons
the case where both the fast and slow modes propagate i
forward direction only. This limits the range of the wav
guide parameter,X, to

1/g i
2,X,1. ~5!

Note that the upper limit onX implies that the relativistic
cyclotron frequency, in the drift frame of the electrons, m
be greater than the waveguide cutoff frequency.

The ‘‘device parameter’’V, is defined as in Ref.@16# to
be

V5
2

X
215

1

vc
2 ~v fvs2ki fkisc

2!, ~6!

and is constrained to lie within the limits

1,V,Vmax,

where Vmax5(11e6)/(2e3) and e35ki f /kis . The upper
limit on V is for the limit vc→0. If V lies toward the mini-
mum of the interval, then the interaction is of the gyrotr
type; conversely, ifV lies toward the maximum of the inter
val then the interaction is of the cyclotron autoresona

FIG. 1. ~a! Dispersion diagram showing the intersection of ele
tron beam and waveguide modes.~b! Dispersion diagram illustrat-
ing the different operating regimes for two values of the dev
parameterV for e52 (Vmax54).
g
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t
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maser type. Figure 1~b! shows the different regimes of op
eration asV increases fromV'1 to V'Vmax. For finite
values ofe the upper limitVmax places a more restrictive
lower limit on the value ofX than that of Eq.~5!, giving a
range of allowable values 4e3/(e311)2,X,1.

The CRM interaction may be considered at only one
the resonant modes, either fast or slow. We call this
single mode model, and it has previously been the subjec
substantial interest@1,5–15#. These works have been con
ducted in the steady state regime, which neglects propaga
effects due to the difference between the group velocities
the radiation and the average axial velocity of the electro
In one of those works@13#, the equations describing th
CRM interaction were written in a scaled form in terms
two physically meaningful scaling parameters. The first
the fundamental CRM parameter,r, analogous to the Pierc
parameter of traveling wave tube~TWT! theory @27#, and
determines the growth rate of the electron/radiation insta
ity. The second is the depletion parameterm, which de-
scribes the effects of free energy depletion of the elect
beam@1#. The depletion parameter is a measure of the abi
of the interaction to convert the energy associated with
cyclotron motion of the electrons into radiation. For sm
values of the depletion parameter, only a small fraction
this energy is available. The fundamental CRM parameter,
and the depletion parameterm, are related via the relation

m5
r

n
, ~7!

wheren is the free energy parameter, and is a measure of
transverse energy content of the electron beam relative to
axial energy@13,16#. Linear theory shows that there is
threshold value of the depletion parameter,m th , above which
no exponential growth of the radiation field is possible. A
two of the three parametersr, m, andn, defined in Sec. II
may be used in the scaling of the equations describing
interaction. Here, as in our previous publications, we ha
chosen the fundamental CRM parameter and the deple
parameter as our primary scaling parameters.

In a two mode interaction, however, we are free to cho
between ther and m parameters of the fast or the slo
modes, which we designate with subscriptsf and s, respec-
tively. In this paper the fast mode scaling is chosen, conv
sion to slow mode scaling being straightforward via the
lations

r f5e2rs , m f5ms /e. ~8!

Note thatr f is bounded within the interval

0,r f,2m fe
3/~e311!, ~9!

the upper limit resulting from the restrictionv i,c. This up-
per limit on the value ofr f limits the growth rate of the
radiation and also the efficiency of the device@16#. Summa-
rizing, in total four parameters are required to describe
CRM coupled interaction between the fast and slow mod
the axial wave vector ratioe; the device parameterV; the
CRM parameter for the fast mode,r f ; and the depletion
parameter of the fast mode,m f .

-
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1154 PRE 59AITKEN, McNEIL, ROBB, AND PHELPS
A linear and numerical analysis of the coupled two mo
interaction has been conducted in the steady state reg
where propagation effects are neglected@16#. Here the inter-
action of the slow mode has a larger growth rate, except
a small region of parameter space where linear theory
numerical simulation predict no exponential growth of t
slow mode for a range of the depletion parameterm f . This
range corresponds to that where, due to the scaling of
~8!, the value of the depletion parameter of the fast mod
below threshold (m f,m th), but that for the slow mode is
above threshold (ms.m th):

1

eF S 27

32D
1/3

1
r f

2e2G,m f,S 27

32D
1/3

1
r f

2
. ~10!

Hence choice ofm f from within this region allows for a ‘‘m
suppression’’ of the lower frequency slow mode.

In the steady state regime the radiation intensity scale
ne

4/3, wherene is the electron density; however, when prop
gation effects are included in the model, there is anot
regime of operation known as the superradiant regime@23#,
where the radiation intensity scales asne

2 . The purpose of
this paper is to investigate the CRM interaction for electr
pulses, including propagation effects, for both the single
quency and two frequency regimes@23,28#. Of fundamental
importance when discussing electron pulses is the coop
tion length. This length is the minimum distance within t
electron pulse between which electrons may interact co
eratively, and may be defined as the relative slippage
tance between the radiation envelope and the electron p
in one gain length. An electron pulse is defined to be long
short with respect to a length proportional to the coopera
length. However, both the slippage distance and the g
length are different for the two frequencies of the fast a
slow modes, and so the cooperation length is different
each frequency. Due to this frequency dependent coopera
length it is possible for the same electron pulse to be lo
with respect to the higher frequency cooperation length
short with respect to the lower frequency cooperation leng
Typically short pulses give rise to a weak superradiant in
action in which the intensity of the radiation emitted is le
than that from long pulses where strong superradiance
steady state effects dominate. By choosing a scaled elec
pulse length that is long with respect to the high-frequen
fast mode, and short with respect to the low-frequency s
mode, suppression of the latter is possible. We call s
suppression of the slow mode ‘‘pulse suppression.’’

A linear analysis is presented and a comparison m
with numerical solutions of both linear and nonlinear inte
actions. The two methods of slow mode suppression,m sup-
pression and pulse suppression, are presented using
short and long electron pulses.

II. SCALED EQUATIONS

The set of scaled equations which describe the pulse
lution in a CRM are the partial differential form of thos
derived in the steady state@16#. We start from the coupled
Maxwell-Lorentz equations describing the radiation a
electron beam evolution as described in Ref.@13#. A thin
annular electron beam propagating in the positiveẑ direction
e
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along a cylindrical waveguide containing ‘‘cold’’ TEm,n
waveguide modes is assumed. The waveguide is coaxial
a static magnetic fieldB5B0ẑ. These modes are defined b
the cylindrical components of the electric fields:

Ef ,s
~r !52

m

2r
F f ,s~z,t !DTEJm~k'r !eiC f ,s1c.c.,

Ef ,s
~u!5

ik'

2
F f ,s~z,t !DTEJm8 ~k'r !eiC f ,s1c.c.,

Ef ,s
~z!50,

where

C f ,s5v f ,st2mu2ki f ,sz,

DTE5
1

Jm~xmn8 !Ap~xmn82 2m2!
,

k' is the transverse component of the radiation wave vec
xmn8 is thenth root ofJm8 (k'Rw)50 andRw is the waveguide
radius. The field is assumed to obey the slowly varying
velope approximation ~SVEA! so that F f ,s(z,t)
5uF f ,s(z,t)uei j f ,s(z,t) is a slowly varying complex envelop
function determining thez andt dependence of the amplitud
and phase of the radiation field.

The product of the transverse component of the radia
wave vector, and the Larmor radius of the gyrating electro
is assumed small, i.e.,k'r L,1. This is an experimentally
desirable approximation which maximizes coupling with t
radiation mode when the electron beam annulus is coincid
with the maximum of the transverse mode electric field. F
ther, it is assumed there are no space charge effects and
the electron beam phase evolution is slow with respect to
cyclotron period. The latter allows the Maxwell-Loren
equations to be averaged over a cyclotron period. The ef
of beating between the two radiation frequencies is also
glected by averaging the wave equations over a beat pe
which under the SVEA is valid forv f*2vs . This is in
contrast to the work of@21,22#, where ‘‘group synchronism’’
between the beam mode and the waveguide mode is assu
(vgf

'vgs
'v i). This minimizes the effects of the relativ

slippage between the fast and slow resonant modes, and
the interaction into a regime where the effects of the bea
between these modes and waveguide dispersion canno
neglected. The work presented here is therefore not ap
cable to the experimental results of Ref.@21#. With these
approximations the coupled Maxwell-Lorentz equations
duce to the following forms:

df f j

dz̄f

5 p̄f j
2

im f

ū' j
ūi j

~Āfe
if f j1e2Āse

ifsj2c.c.!, ~11!

dz̄1 f j

dz̄f

5
r f

V21
~e p̄sj

2 p̄f j
!, ~12!
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PRE 59 1155PULSE PROPAGATION EFFECTS IN A CYCLOTRON . . .
dp̄f j

dz̄f

5
ū' j

ūi j

2 F ~r f p̄ f j
21!Āfe

if f j1S r f

e
p̄f j

2e2V D Āse
ifsj1c.c.G ,

~13!

dp̄sj

dz̄f

5
ū' j

ūi j

2 F S r f p̄sj
2

V

e D Āfe
if f j1S r f

e
p̄sj

2e D Āse
ifsj1c.c .G ,

~14!

dū' j

dz̄f

52
m f

ūi j

~Āfe
if f j1e2Āse

ifsj1c.c.!, ~15!

dūi j

dz̄f

52
ū' j

r f

ūi j

S Āfe
if f j1

1

e
Āse

ifsj1c.c.D , ~16!

S ]

] z̄f

1
]

] z̄1 f

D Āf~ z̄f ,z̄1 f
!5b̄f , ~17!

S ]

] z̄f

2e3
]

] z̄1 f

D Ās~ z̄f ,z̄1 f
!5eb̄s , ~18!

where

j 51, . . . ,N, z̄f5
z

l gf

, t̄ f5
vgf

t

l gf

, z̄1 f
5

z̄f2b f t̄ f

12b f
,

f f ,s5v f ,st2ki f ,s
z1tan21S uy

ux
D2~m21!u02

p

2
,

ū' j
5

u' j

u'0
, ūi j

5
ui j

ui0
, u' j

5gv' , ui j
5gv i ,

Āf ,s5
ieu'0ki f ,s

2 DTEJm21~k'R0!

4meui0
2 k'v f ,sr f ,s

2
F f ,s ,

p̄f ,s5
ki f ,s

k'
2

1

r f ,s
pf ,s , pf ,s5

1

v i
~v f ,s2vH!2ki f ,s ,

kH05
gvH

ui0
,

r f ,s5S e

8e0mec
2

ki f ,s
2

k'
2

u'0
2

ui0
3

ID TE
2 Jm21

2 ~k'R0!D 1/3

,

n f ,s5
ki f ,s

kH0

u'0
2

ui0
2

, m f ,s5
r f ,s

n f ,s
, l gf

5
kf

k'
2 r f

,

b̄f ,s5
1

Nb0

(
j 51

Nb

x j

ū' j

ūi j

e2 if f ,sj.

j is the electron index number,N is the total number of
~macro! electrons;Nb is the number of~macro!electrons in
the beat period centered at positionz̄1 f
; x j are the macro-

electron charge weightings normalized with respect to
value evaluated at the peak currentI, so that 0,x j<1; sub-
scripts' and i represent vector components perpendicu
and parallel to the waveguide axis;r L is the Larmor radius of
a gyrating electron;g is the electron relativistic factor
(R0 ,u0) are the polar coordinates with respect to the wa
guide axis of the electron guiding centers; (v' ,v i) are the
electron velocity components;b f ,s5v i /vgf ,s

is the ratio of

the axial electron to group velocities;l gf
is the gain length

for the fast mode; and subscripts 0 indicate initial values
entering the interaction region atz̄f50. The geometry of the
electron beamlet illustrating the geometric variables is sho
in Fig. 2. In all of the following work we assume an electro
pulse with a rectangular current distribution, so thatx j
51; j . We also assume that there is no cavity feedback
that the system acts as a single pass amplifier.

With the exception of the scaling and the consideration
two radiation frequencies, the derivation of Eqs.~11!–~18!
follows a similar course to that of previous works@5–13#.
Use has been made of Graf’s theorem for Bessel function
averaging the equations over a cyclotron period. An elect
is said to be resonant with a radiation field whend f ,s

5 p̄f ,s( z̄f50)50. Evolution of a resonant, or nearly res
nant, electron beam allows a ‘‘slow’’ exchange of ener
between the beam and the radiation. In deriving Eqs.~11!–
~18! the independent variables have been scaled with res
to the fast mode parameters. Scaling with respect to the s
mode is possible via the relations

z̄s5e z̄f z̄1s
5

1

e2
~ l̄ ef

2 z̄1 f
!, ~19!

where l̄ ef
is the length of the electron pulsel e scaled in units

of z̄1 f
.

We define the relative propagation distance of the rad
tion envelope with respect to the electron pulse to be
slippage distance. Furthermore, we define a coopera

FIG. 2. A schematic of an electron beamlet showing the relev
geometry.
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1156 PRE 59AITKEN, McNEIL, ROBB, AND PHELPS
length to be the slippage distance in one gain length. It
be shown that the cooperation lengths for both fast and s
modes are given by

l cf ,s
5

12b f ,s

b f ,s
l gf ,s

. ~20!

With these definitions the scaled length of the electron pu
may be written as

l̄ ef ,s
5

l e

b f ,sl cf ,s

. ~21!

Historically this formalism was developed for free electr
laser~FEL! theory where theb in the denominator of~21! is
approximately one@24–26#. The electron pulse was then d
fined as being either long or short with respect to the co
eration length. Here, however,b f ,s need not be approxi
mately 1, and we redefine the pulse as being long or s
with respect tob f ,sl cf ,s

. In this way we consider pulses to b

short for l̄ ef ,s
&1 and long forl̄ ef ,s

@1. This scaled length is
an important measure of the total gain experienced by
radiation as it propagates through the electron pulse. U
the scaling of Eq.~19!, it can be shown thatl̄ ef

5e2 l̄ es
and as

e.1, the scaled pulse length of the fast mode is greater t
that of the slow and may result in ‘‘pulse suppression’’ of t
latter.

III. LINEAR ANALYSIS

A linear analysis of Eqs.~11!–~18! is performed for the
case of zero spread in electron energy and transverse
menta, using the method of ‘‘collective variables’’ as d
scribed in Ref.@29#. This shows that in the linear regime th
fast and slow modes are decoupled and evolve indep
dently, as was the case for the steady state@16#. Following
the analysis of Refs.@23,25#, it is found that for both fast and
slow modes, in addition to the usual steady state solutio
there exist solutions which correspond to superradiant p
cesses, where the intensity of the electromagnetic fie
scales as the square of the number of emitters. Such su
radiant emission is confined to the slippage regions of
electron pulse as defined by the shaded regions of Fig.

For convenience the following variables are introduce

FIG. 3. Schematic representation of the electron pulse and
diation field envelopes illustrating the slippage regions~SR!
~hatched! and the steady state~SS! region of the electron pulse
Superradiant emission of the fast and slow modes is confine
regions (SRf) and (SRs), respectively.
n
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Af85Āfe
id f z̄, As85Āse

i edsz̄, f f85f f2d f z̄,

fs85fs2edsz̄, pf85 p̄f2d f , ps85 p̄s2ds,

and the equations are linearized about their equilibrium v
ues

Af ,s8 50, ^e2 if f ,s8 &50,

ū' j
51, ūi j

51, pf ,sj
8 50 ; j ,

with collective variables defined by

bf52 i ^f f 1
8 e2 if f 0

8 &, bs52 i ^fs1
8 e2 ifs0

8 &,

Pf5^pf 1
8 e2 if f 0

8 &, Ps5^ps1
8 e2 ifs0

8 &,

U' f5^ū'1
e2 if f 0

8 &, U's5^ū'1
e2 ifs0

8 &,

U i f5^ūi1
e2 if f 0

8 &, U is5^ūi1
e2 ifs0

8 &.

all subscripts 1 referring to small changes from the equi
rium values subscripted 0 atz̄f50.

Using the collective variable description and the meth
of Laplace transforms, it is possible to reduce systems~11!–
~18! to two uncoupled first order linear ordinary differenti
equations in the complex Laplace transformed field am
tudesÃf ,s(l f ,s , t̄ f ,s8 ):

dÃ~l, t̄ 8!

d t̄8
1

iD~l!

~12b!l2
Ã~l, t̄ 8!

5
1

~12b!
S A08~ t̄ 8!2

ib0~ t̄ 8!

l
D ~22!

where

Ã~l, t̄ 8!5E
0

`

A8~ z̄8, t̄ 8!eil z̄8dz̄8, ~23!

D~l!5l32dl21~r22m!l1~12rd!, ~24!

with boundary conditions

A8~ z̄850,t̄ 8!5A08~ t̄ 8!, b~ z̄850,t̄ 8!5b0~ t̄ 8!. ~25!

The variablesz̄85 z̄, t̄ 85 z̄2b t̄ , and thef and s subscripts
have been omitted as the form of Eq.~22! is identical for
both modes. Here we consider a constant initial field and
initial bunching, consistent with a single pass amplifier co
figuration

A8~ z̄8, t̄ 850!5A08e
id z̄8, b~ z̄8, t̄ 850!50.

Taking the inverse Laplace transform of the solution to E
~22! results in a solution forA8( z̄, t̄ ) which can be expresse
as the sum of two terms:

A8~ z̄, t̄ !5ASS8 ~ z̄!1A28~ z̄, t̄ !. ~26!

a-

to



e

al
io

l

o
re
in-

i-

f

m
e

io
a

th
-

til
as
s
th
th

a-
t

curs

vari-

ta-

gion

tion

ec-
led

ion
er,

l
be
re-

e
of
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The first term depends only uponz̄, and is determined by the
residues of the three simple polesl1,2,3 which are the roots
of the dispersion relationD(l)50. Forz̄*1 the form ofĀSS
is therefore just that of the steady state@16#, which for
d,r,m!1 gives the scaled field intensity

Ī SS5uĀSS~z!u2'
uĀ0u2

9
expSA3z

l g
D . ~27!

The gain lengthl g is therefore the distance over which th
field intensity increases by factor ofeA3 in this linear regime.
When free energy depletion effects are included in the an
sis, it is found that there is a threshold value of the deplet

parameterm th5( 27
32 )1/31r/2 above which no exponentia

growth of the field occurs.
The second term in Eq.~26! is both space (z̄), and time

( t̄ ), dependent, and so may describe a pulse structure. C
tributions to this term come from the residues of the th
simple polesl1,2,3 and from the residue of an essential s
gularity atl50. Defining a new variable

z̄25
b

12b
~ t̄ 2 z̄!

so thatz̄5 z̄11 z̄2 , the second term in Eq.~26! can be written
as

A28~ z̄1 ,z̄2!52
iA08

2p
eid z̄1E

2`2 is

`2 is eil z̄2

D~l!S ~c1l1c0!

l2d D
3expF2 i S c1

l
1

c0

l2D z̄1Gdl. ~28!

wherec0512rd andc15r22m. When z̄2,0, the contri-
bution fromA28( z̄1 ,z̄2) is zero, and the resultant field ampl

tude is just that due to the steady state. Conversely, iz̄2

.0, thenA28( z̄1 ,z̄2)52ASS8 ( z̄)1ASR8 ( z̄1 ,z̄2), and the result-

ant field will be A8( z̄1 ,z̄2)5ASR8 ( z̄1 ,z̄2), whereASR8 ( z̄1 ,z̄2)
arises from the essential singularity atl50 alone. When
z̄1.0 andz̄2.0, evolution is due to a different process fro
that which produces steady state evolution and gives ris
superradiance. From the definitions ofz̄1 andz̄2 , the regions
where superradiance may occur are the slippage reg
shown in Fig. 3. The slippage region for the fast mode is
the electron pulse tail defined by the region 0, z̄1 f

, z̄f , and
for the slow mode at the front of the pulse defined by
region l̄ ef

2e3z̄f, z̄1 f
, l̄ ef

. Between the two slippage re

gions is an area where steady state emission occurs unz̄f

. l̄ ef
/(11e3) when the two slippage regions overlap. It w

previously shown in Ref.@16# that for long electron pulse
( l ē@1), and for the steady state region within the pulse,
slow mode growth can be suppressed using
m-suppression condition of Eq.~10!, and the fast mode
dominates the interaction.

A threshold condition for exponential growth of the radi
tion fields, analogous to that of the steady state, applies to
y-
n

n-
e

to

ns
t

e

e
e

he

slippage regions of both the fast and slow modes and oc
within the regions of the pulse defined by (f ands subscripts
assumed!

z̄, z̄1,
z̄

11S 2m2r

3 D 3 . ~29!

These regions of the pulse are shown, using fast-scaled
ables, in Fig. 4. It is seen, recalling the upper limit ofr from
Eq. ~9!, that this region disappears in the FEL limitm→0.

The rate at which the boundary of the exponential ins
bility moves within the slippage region is given by

dz̄1

dz̄
5

1

11S 2m2r

3 D 3,1,

whereas that for the boundary between the slippage re
and the steady state is

dz̄1

dz̄
51.

Hence the shaded regions of Fig. 4 expand as the interac
proceeds with increasingz̄. In the high gain regime (z̄.1)
the shaded nonexponential regions will lie out with the el
tron pulse, and so do not affect the interaction, for sca
pulse lengths

l̄ e,
1

11S 2m2r

3 D 3 ,

and it would be expected that there will be little suppress
of the exponential instability. For long pulses, howev
where

l̄ e@
1

11S 2m2r

3 D 3 ,

and for larger values ofm, the effects of the nonexponentia
region would be expected to be more pronounced. It will
seen from computational simulations into the non-linear
gime that this is the case.

In the limit of m!1 an asymptotic approximation for th
solution toASR8 ( z̄1 ,z̄2) can be obtained using the method

FIG. 4. Region of no exponential growth~shaded! within the
slippage regions~hatched! of the fast and slow modes.
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1158 PRE 59AITKEN, McNEIL, ROBB, AND PHELPS
stationary phase as described in Ref.@25#. The linear solution
for the complex field can then be approximated in the lim
of largex by

ĀSR'
Ā0

22/3A3px1/2Q~ z̄1 ,z̄2!

3expS 3

2
~A31 i !

x

22/3
1 id z̄12

ip

12D , ~30!

where

x5~ z̄1z̄2
2!1/3,

z̄5 z̄11 z̄2 ,

Q~ z̄1 ,z̄2!511dS 2z̄1

z̄2
D 2/3

expS ip

3 D2
2z̄1

z̄2

.

Using Eq.~30!, the ratio of the scaled intensities of the r
diation for the fast and slow modes as they exit the elect
pulse of lengthl̄ ef

~at the leading edge of the electron pul
for the higher frequency and at the trailing edge for t
lower! is

Ī f~ z̄1 f
5 l̄ ef

,z̄f !

Ī s~ z̄1 f
50,z̄f !

5S z̄f2 l̄ ef

e3z̄f2 l̄ ef

D 4/3S e3z̄f23 l̄ ef

e~ z̄f23 l̄ ef
!
D 2

3expF3A3

22/3
l̄ ef

1/3S ~ z̄f2 l̄ ef
!2/3

2
1

e2
~e3z̄f2 l̄ ef

!2/3D G , ~31!

where use has been made of the relation

z̄2s
5e z̄f2

1

e2
~ l̄ ef

2 z̄1 f
!, ~32!

and equal initial scaled intensities for the fast and sl
modes with no initial bunching have been assumed (Āf 0

5Ās0
,bf 0

5bs0
50). Note from the scaling that the ratio o

real, unscaled, intensities is given by

I f

I s
5

e3V21

e~e32V!

Ī f

Ī s

. ~33!

In Fig. 5 a plot of ratio~31! as a function of scaled electro
pulse lengthl̄ ef

is shown. It is seen that as the electron pu
length increases so the ratio decreases. This shows tha
sufficiently short electron pulses, emission at the higher
quency fast mode can be substantially greater than in
steady state where, withoutm suppression, the slow mod
dominates. We call this pulse suppression of the slow mo
Although the slow mode has a higher growth rate than
fast mode, its scaled pulse lengthl̄ es

is shorter. Thus the
t

n

e

e
for
-
e

e.
e

slow mode may experience less gain than the fast mod
will be shown that this mechanism provides a method
suppressing the growth of the slow mode in short elect
pulses, allowing the higher frequency fast mode to domin

IV. NUMERICAL MODEL

In order to describe the evolution of the coupled radiat
fields and electrons numerically, the method of finite e
ments is applied@30#. This method assigns radiation fiel
values to a set of nodal grid points, allowing a pulse struct
to be described. The value of the fields at each node evo
due to the interaction with the electrons. Between nod
interpolation is used to calculate the fields so that they v
continuously throughout the pulse. Furthermore, the driv
terms of the wave equations are also assigned to nodal
points.

In the case considered here, where there are two copr
gating radiation fields, two sets of nodal grid points are
quired, one set for each field. The scaled radiation fields
driving terms at thenth node are defined asĀf ,sn

( z̄f) and

b̄f ,sn
( z̄f), respectively.

For positions intermediate to these nodes the field is
constructed by interpolation from the nodal values as sho
in Fig. 6~a!. For the case illustrated a linear interpolatio
function is shown. For higher order interpolation extra nod
internal to the elements will be required@30#. Both the scaled
fields and driving terms may be approximated by a sum o
the elements of the interpolated nodal values,

Āf ,s~ z̄f ,z̄1 f
!'(

e51

Ne

bL f ,s~ z̄1 f
!ce$Āf ,s~ z̄f !%e , ~34!

b̄f ,s~ z̄f ,z̄1 f
!'(

e51

Ne

bL f ,s~ z̄1 f
!ce$b̄f ,s~ z̄f !%e , ~35!

wherebL f ,s( z̄1 f
) ce is a row vector of functions used to inte

polate the fields and driving terms of theeth element from
their nodal values as defined by the column vect

$Āf ,s( z̄f)%e and $b̄f ,s( z̄f)%e . The interpolation functions for
the eth element are defined to be zero out with the range
z̄1 f

of the element.
In the electron frame of reference the slow mode is co

terpropagating to the fast mode, and so the nodes are n
bered in the opposite sense to those of the fast mode@Fig.
6~b!#. At each fast/slow node the driving termsbf ,sn

are cal-
culated from the sum over the number of electrons withi
beat period, as illustrated in Fig. 6~c!, consistent with the
averaging of the wave equations over a beat period.

Consider the fields in theeth element only, and substitut
Eqs. ~34! and ~35! into wave equations~17! and ~18! and
apply the ‘‘Galerkin criterion’’ @30#, which assumes tha
with the approximation for fields~34!, the left hand side of
Eqs.~17! and ~18! must be equal to the right hand side ‘‘i
some average sense.’’ This average is taken by using
interpolation functions as weighting functions for the ave
age. Premultiplying both sides of the wave equations
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$L f ,s( z̄1 f
)%e , and integrating over a range@2`,`# of z̄1 f

,
yields the elemental wave equations

@Cf #eH dĀf

dz̄f
J

e

5$Bf%e2@K f #e$Āf%e , ~36!

@Cs#eH dĀs

dz̄f
J

e

5$Bs%e1e3@Ks#e$Ās%e , ~37!

where the matrices@Cf #e and @K f #e are given by

@Cf ,s#e5E
2`

`

$L f ,s~ z̄1 f
!%ebL f ,s~ z̄1 f

!cedz̄1 f
, ~38!

@K f ,s#e5E
2`

`

$L f ,s~ z̄1 f
!%e

d

dz̄1 f

bL f ,s~ z̄1 f
!cedz̄1 f

~39!

and

$Bf%e5@Cf #e$b̄f%e , ~40!

$Bs%e5e@Cs#e$b̄s%e . ~41!

The wave equations describing the evolution of the en
fields are constructed from the elemental wave equations
scribing the field evolution in each element. The coupling
one element to another arises from the common nodal fi
values of adjacent elements. The construction process
the application of the boundary conditions are clearly
scribed in the literature@30#.

FIG. 5. The scaled intensity ratioĪ f / Ī s as a function of scaled

electron pulse lengthl̄ ef
for z̄f520 ande354. The intensityĪ f is

that of the higher frequencyv f on exiting the electron pulse at it

leading edge,z̄1 f
5 l̄ ef

. The intensity Ī s is that of the lower fre-

quencyvs on exiting the electron pulse at its trailing edge,z̄1 f

50.
e
e-
f
ld
nd
-

Construction of the full wave equation from the elemen
equations and application of the boundary conditions of
wave equation yields a system of ordinary differential eq
tions in the scaled nodal field amplitudesĀf ,sn

( z̄f):

@Cf #H dĀf~ z̄f !

dz̄f
J 5$Bf%2@K f #$Āf%, ~42!

@Cs#H dĀs~ z̄f !

dz̄f
J 5$Bs%1e3@Ks#$Ās%. ~43!

Here $Bf ,s% are the source terms due to the macropartic
each field node being driven only by the macroparticles c
tained within the average over a beat centered at the no

The set of ordinary differential equations~42! and ~43!
together with the particle equations~11!–~16! constitute a
large system of ordinary differential equations which may
solved for the derivatives using standard sparse matrix s
ers, and then integrated inz̄f using, for example, a fourth
order Runge-Kutta routine. The above model can be ea
adapted to study one mode evolution when there is only
resonant frequency.

V. ANALYSIS

In this section numerical solutions of the above mod
will be given for single mode and two mode interactions, a
for long and short electron pulses. We begin by compar
the results of the linear analysis of Sec. III with numeric
solutions from the model of Sec. IV. The analysis of t
linear regime showed that the fast and slow modes decou
In order to compare this analysis with the numerical mod

FIG. 6. ~a! The interpolation functionsL1 f
andL2 f

for the nth
element of the fast mode.~b! The interpolation functionsL1s

and
L2s

for the nth element of the slow mode.~c! The nodal driving

term b̄f n
is found by averaging over the contributions of the ele

trons contained within a beat period.
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1160 PRE 59AITKEN, McNEIL, ROBB, AND PHELPS
it is sufficient therefore to model two single mode intera
tions numerically with the appropriate fast and slow para
eters.

A single mode interaction, either fast or slow, is th
modeled numerically for both short and long electron pul
into the nonlinear regime. We demonstrate the superrad
scaling of the radiation emitted by a short electron pul
termed ‘‘weak superradiance’’ in close analogy with that
FEL theory@26#. It is shown that the effect of increasing fre
energy depletion can destroy the superradiant nature of
emitted radiation. Furthermore, it is shown that the supe
diant intensity emitted by a short electron pulse has an
ponentially decaying dependence upon the depletion par
eter m. This rate of decay becomes more pronounced
increasing the real length of the electron pulse. For lo
electron pulses the regime of ‘‘strong superradiance’’
demonstrated.~Again this terminology is directly analogou
to that of FEL theory.! The radiation emitted in the stead
state region of a long pulse may be suppressed by choos
value of the depletion parameterm above the threshold valu
m th . In the slippage region of the pulse where superrad
emission may occur, and for larger values ofm, we demon-
strate that superradiant emission exists but is significa
reduced.

The full numerical model is then used to study t
coupled interaction between fast and slow modes, and
short and long electron pulses. The linear theory of Sec
suggested that a suppression of the slow mode may be
sible by the choice of a suitably short electron pulse. Sim
lations demonstrate that this pulse suppression of the s
mode is enhanced when the interaction becomes nonline
is shown that the higher frequency fast mode may in f
dominate the coupled interaction, yielding a true pulse s
pression of the lower frequency slow mode. Furthermore,
short electron pulses weak superradiance is shown to e
for both slow and fast modes. On increasing the elect
pulse length, and for sufficiently low free energy depletio
the slow mode becomes dominant with significantly redu
emission of the fast mode. In addition, strong superrad
emission of the slow mode is observable. Increasing the
fects of free energy depletion by increasingm, steady state
suppression of the slow mode only is possible using
m-suppression condition of Eq.~10!. In this case the fas
mode becomes dominant, and strong superradiance of
mode is observable. Increasingm further also suppresse
steady state fast mode growth, and significantly redu
strong superradiance.

A. Comparison of numerical solutions with short pulse
linear theory

Previous work has given both linear and numerical so
tions for the two mode interaction in the steady state@16#. As
with this previous work, the linear analysis for pulses of S
III showed that the fast and slow modes are decoupled
order to compare our numerical solutions with this line
theory, we use a single mode model for the fast and s
modes. By single mode model, we mean that the elect
radiation interaction with either the fast or the slow mo
may be artificially switched off in the numerical simulatio

The above linear theory of Fig. 5 shows that for sh
pulses the scaled intensities of the fast and slow modes
-
-
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approximately equal,Ī f' Ī s . This is verified in Fig. 7, where
we plot the scaled intensities for the two modes as functi
of z̄f as calculated by the linear theory, and directly comp
with single mode numerical solutions for a short pulse
l̄ ef

50.26. As with Fig. 5, the scaled intensities are those

they exit the electron pulse into vacuum, i.e.,Ī f( z̄1 f

5 l̄ ef
,z̄f) and Ī s( z̄1 f

50,z̄f). The near equality of these fas
and slow mode intensities can be seen from the superpos
of the two linear theory plots, and the near superposition
the two numerical solutions in the linear regimez̄f&30. The
discrepancy between the linear and numerical solutions m
be ascribed to the asymptotic form of the linear solution a
the nonlinear effects in the numerical solution for larger v
ues ofz̄f . We stress here that the numerical solutions are
single mode uncoupled evolution, for the purposes of co
parison with linear theory. It will be seen in Sec. V C th
when coupling between the modes is included in the num
cal model, this uncoupled linear theory quickly breaks do
for significantly smaller values ofz̄f .

B. Single mode superradiance

The emission from electron pulses is now investigated
a single mode interaction into the nonlinear regime. This
carried out using the single mode numerical model descri
in Sec. V A. We call the limitm!1 the FEL limit as, for
single mode interaction only, the scaled equations reduc
those describing the Compton FEL@13#. The similarities be-
tween the CRM and FEL theory extends to that of pu
interaction where, under specified conditions, radiation em
ted may be superradiant. In superradiance the radiation
tensity scales as the square of the number of emitterI
}ne

2 , wherene is the electron density. In the steady sta

FIG. 7. A comparison of the linear@~a! fast; ~b! slow# and nu-
merical@~c! fast; ~d! slow# scaled field intensities, for a single mod

interaction:e354, V52.0125, l̄ ef
50.26, r f5m f50.01, andĀf 0

5Ās0
51025.
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PRE 59 1161PULSE PROPAGATION EFFECTS IN A CYCLOTRON . . .
regime, and in the FEL limit of the CRM, radiation intens
ties scale asne

4/3. It is easily shown that for the scaling use
here, wherer}ne

1/3, superradiant emission occurs when t

scaled intensityĪ 5uĀu2}r2 and in the steady state FE
limit, Ī is r independent. When free energy depletion effe
become important, however, the steady state scaled inte
takes on the scalingĪ }1/m. For the case of a constant fre
energy parametern this scaling corresponds to a real inte
sity I}ne .

1. Short pulses

As in the FEL, weak superradiance in a CRM is char
terized by the emission of a pulse of radiation with a pe
intensity significantly less than the saturation intensity of
steady state. Typical weak superradiant emission by a s
electron pulsel̄ ef

50.26 (l̄ es
50.10) is shown in Fig. 8. The

case shown here is for an interaction at the lower freque
slow mode only, so that the group velocity of the radiation
less than that of the electrons and the radiation propag
from right to left in the figure, asz̄f increases. Dependin
upon the value ofms the first peak of the scaled intensit
Ī sp

, here atz̄1 f
'265, may have a superradiant scaling.

This is demonstrated in Fig. 9, where we plotĪ sp
as a

function of the scaled lengthl̄ es

2 for two different values of

the free energy parameterns . The following two points
should be noted with regard to the scaling. First, it has b
assumed that the pulse lengthl e is a constant, so thatl̄ es

}rs and superradiant scaling will occur whenĪ sp
} l̄ es

2 . Sec-

ond, from the definition ofms following Eq. ~18!, it is seen
that if changes inrs are due to the electron current only, the
the value ofms}rs . Hence, for a constantns , each graph of
the figure has a value ofms which is in proportion to the
value of l̄ es

. For the shorter electron pulses the linear dep

dence ofĪ sp
with l̄ es

2 is clearly seen in Fig. 9~a!, indicating

FIG. 8. Typical weak superradiant emission of the lower f
quency slow mode by a short electron pulse and for single m

interaction: l̄ ef
50.26, rs50.04, ms50.16, Ās0

51025, z̄f551, e3

54, andV52.0125.
s
ity

-
k
e
ort

cy
s
tes

n

-

superradiant emission. As the scaled electron pulse len
increases so the superradiant proportionality betweenĪ sp

and

l̄ es

2 breaks down. On increasing the scaled length further

seen thatĪ sp
tends to that of the steady state value, indica

by the solid line which scales asĪ sp
}1/ms}1/l̄ es

, corre-

sponding to a real intensity scaling ofI sp
}ne . On decreasing

the value ofns , in Fig. 9~b!, it is seen that the increase
effects of free energy depletion reduces the range inl̄ es

over
which superradiant scaling is observed. Decreasing the
ues ofns further, the suppression of superradiant emission
observed forl̄ es

&1.

The scaling of the peak intensityĪ sp
as a function of the

depletion parameterms is now investigated for three differ
ent short-scaled electron pulse lengths,l̄ es

. The value ofrs

for each graph is a constant, so that the variation inms results
from a variation in the free energy parameterns only. It is
seen from Fig. 10 that there is a near exponentially decre
ing dependence of the intensity with depletion parameterms
and that the longer pulses have a larger saturation inten
than the shorter pulses. These larger intensities result in
electrons becoming energy depleted more readily, and
rate of decrease withms is more pronounced.

2. Long pulses and µ suppression

In addition to weak superradiance, a regime called stro
superradiance may also exist in the slippage regions of l
electron pulses (l̄ e@1), and can give rise to radiation spike
with peak intensities significantly greater than that of t
steady state. Previous descriptions of strong superradia
have been given for the FEL, where it has been describe
terms of the weak superradiance emitted by the slippage
gion of the electron pulse which has been amplified
propagating further through the electron pulse@24–26#. Es-
sentially the same mechanism may occur in the CRM w
the added feature of free energy depletion. A typical stro

-
e

FIG. 9. Peak intensity as a function ofl̄ es

2 for two different
values ofns : ~a! ns50.25 and~b! ns50.1. The solid lines give the
results of the equivalent steady state numerical simulation.
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1162 PRE 59AITKEN, McNEIL, ROBB, AND PHELPS
superradiant emission is demonstrated in Fig. 11. As with
short pulse example, interaction with the slow mode is c
sidered. The slippage region is now at the front of the el
tron pulse, as seen in Fig. 3, and as with the short pulse
of above, the radiation propagates from right to left as
interaction progresses. The radiation in this figure may
broken down into three regions which are, from left to rig
in the figure, the vacuum region, where the radiation
propagated outside of the electron pulse into vacuum;
steady state region, which has an intensity which isz̄1 inde-
pendent; and the slippage region where strong superradi
may be observed. On propagating into vacuum the radia
from the steady state no longer interacts and merely pro
gates. Hence the vacuum radiation describes a ‘‘history’
the steady state evolution, and the usual steady state inte
evolution, of exponential growth followed by saturation a
oscillation, is clearly seen. In the slippage region the stro
superradiant spiking is observed with an intensity sign
cantly greater than that of the steady state saturation va

FIG. 10. Peak intensity as a function ofms for three different

short pulse lengths:~a! rs50.08; l̄ ef
53; ~b! rs50.04, l̄ ef

51; ~c!

rs50.02, l̄ ef
50.5, e354, andV52.0125.

FIG. 11. Typical strong superradiant emission from a long el

tron pulse: l̄ ef
5100, rs50.04, ms50.16, Ās0

51025, z̄f515, e3

54, andV52.0125.
e
-
-
se
e
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For the same long pulse we now set the depletion par
eter above the threshold valuems51.03.m th . In this case
no exponential increase in the steady state intensity is p
sible, as is seen from Fig. 12. Again, as with the short pu
case, this threshold does not apply to the slippage reg
where a significant evolution of the radiation intensity is o
served. The superradiant evolution of the pulse is seen t
significantly reduced from that of Fig. 11. This may be a
tributed not only to the increase in the effect of free ene
depletion, asms has been increased by a factor of 6.5, b
also to the increase in the region of nonexponential inter
tion shown in Fig. 4 and defined by Eq.~29!. The region of
no exponential instability, in the nonsuppressed case of
11, is 40.64, z̄1 f

,40.69, and for the suppressed case of F

12 is extended to 40.64, z̄1 f
,54.53. Not only is there no

exponential instability in this region of the pulse, but th
existing superradiant pulse is unable to propagate into
region. This is clearly demonstrated by comparing the po
tions of the peaks of the superradiant pulses between Figs
and 12.

C. Coupled mode superradiance

The full numerical model is now used to investigate t
coupled evolution of both the fast and slow modes with
electron pulse. These results therefore supersede those o
single mode analysis of previous sections. The electron p
now emits two distinct radiation pulses: a slow mode pu
described in Sec. V B 1 that propagates in the direction
negativez̄1 f

, and a fast mode pulse that propagates in

direction of positivez̄1 f
. An example of a full numerical

solution to the coupled evolution equations demonstrat
such emission is shown in Fig. 13. The peak of the sl
mode emission is atz̄1 f

'218, and that of the fast mode is a

z̄1 f
'5.

1. Short pulses and pulse suppression of the slow mode

The linear theory of Sec. III suggested that it may
possible to suppress the growth of the slow mode by cho

-

FIG. 12. Suppression of the steady state evolution form.m th :

l̄ ef
5100, rs50.04, ms51.03, Ās0

51025, z̄f515, e354, and V

52.0125.
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ing an electron pulse that is sufficiently short. Furthermo
the radiation emitted may also exhibit superradiant scal
A full numerical solution to the coupled evolution equatio
is shown in Fig. 14. An identical set of parameters as th
used to obtain the uncoupled results of Fig. 7 were used,
the exception that in the coupled mode evolution of Fig.
the initial field for the fast mode was set to zero (Āf 0

50).
The results demonstrate that not only does the peak sc
intensity of the fast mode approach that of the slow, as s
gested by the linear theory, but that in the nonlinear reg
the fast mode actually dominates the interaction, the
mode scaled peak intensity being greater than one orde
magnitude above that of the slow mode. This fast mo
domination of the interaction may be understood in terms
two distinct mechanisms. The first is that of pulse suppr
sion, which results from the shorter scaled length of the e
tron pulse in the case of the slow mode as described ab
The second is the ‘‘enhanced emission’’ of the fast mode

FIG. 13. Coupled interaction showing both slow and fast mo

emission:e354, V52.0125, l̄ ef
52.61, r f50.08, m f50.08, Āf 0

50, Ās051025, and z̄f520.

FIG. 14. Scaled intensities~a! Ī f and ~b! Ī s , for the coupled

numerical model. The intensityĪ f is that of the higher frequencyv f

on exiting the electron pulse at its leading edge,z̄1 f
5 l̄ ef

. The in-

tensity Ī s is that of the lower frequencyvs on exiting the electron

pulse at its trailing edge,z̄1 f
50. Here e354, V52.0125, l̄ ef

50.26,r f50.1, m f50.1, Āf 050, andĀs051025.
,
g.

e
th
4

led
g-
e
st
of
e
f

s-
c-
e.
e

to the electron phase bunching of the slow mode interact
This nonlinear parametric coupling is also observed in
steady state evolution, where no pulse effects are pre
@16#, and accounts for the rapid growth of the fast mode fro
zero initial intensity in Fig. 14. We note that the ability of th
fast mode to dominate the interaction is sensitive to the
tial values of the magnitudes of both the fast and slow fie
uĀf 0

u anduĀs0
u. If the latter is too large, it has been observ

that the fast mode may not attain dominance before the s
mode reaches saturation. This sensitivity to initial values w
be investigated further in future work.

In Fig. 15, the peak scaled intensities of the coupled f
and slow modes,Ī pf

and Ī ps
, respectively, are plotted a

functions of the square of the scaled electron pulse len
l̄ ef

2 . The square of the scaled electron pulse length for

slow mode l̄ es

2 is shown on the upper axis, the two bein

related via l̄ ef
5e2 l̄ es

. The solid lines show the result of
full coupled numerical solution, whereas the dashed lin
show the corresponding single mode evolutions of the
and slow modes. Note that for the single fast mode evolut
the initial field amplitude is nonzero (Āf 0

51028), whereas
that for the coupled mode is zero, the initial fast mode fie
growth occurring due to the enhanced emission descri
above. The results of Fig. 15 are the two mode equivalen
Fig. 9 but for only one value of free energy parametern f .
The same scaling applies: superradiant scaling is dem
strated when the peak intensityĪ pf ,s

of an emitted pulse has

linear dependence withl̄ ef

2 .

For the longer pulse lengths of the figure,l̄ ef

2 *80, it is

seen that the slow mode dominates the coupled interactio

e

FIG. 15. Demonstration of pulse suppression showing the p
scaled intensities of the fast and slow modes (I f p

and I sp
respec-

tively! as functions ofl̄ ef

2 ~and l̄ es

2 on the upper axis!: e354, V

52.0125, n f51, ns50.25, Āf 051028 ~uncoupled!, Āf 050

~coupled!, and Ās051025. ~a! Coupled fast mode.~b! Uncoupled
fast mode.~c! Uncoupled slow mode.~d! Coupled slow mode.
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FIG. 16. Intensities of the coupled interactio
for a long electron pulse.~a! Fast mode.~b! Slow

mode.e354, V52.0125, l̄ ef
5100, r f50.1, m f

50.1,Āf 051025, Ās051025, and z̄f532.
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that the fast mode intensities are significantly less than th
for evolution of the fast mode alone. This is consistent w
previous results for the coupled steady state interaction@16#
to which the pulsed interaction tends in the limit of very lo
pulsesl̄ ef ,s

@1.

For the shorter pulse interactionsl̄ ef

2 &30 (l̄ es

2 &5), the

electron pulse is long with respect to the fast mode but s
with respect to the slow mode. This, and the enhanced e
sion of the fast mode, allows the latter to dominate the in
action significantly. Using the relation~33! and the param-
eters of this interaction (e354 andV52.0125), then for a
scaled electron pulse lengthl̄ ef

'4 the unscaled intensity o
the fast mode is approximately 40 times greater than tha
the slow mode. Furthermore, the intensities of the fast m
interaction in this regime are actually greater than those
tained for the single mode evolution of the fast mode. W
call this mechanism of suppression of the lower freque
slow mode pulse suppression.

For pulse lengths 0, l̄ ef

2 &4 (0, l̄ es

2 &1), and for the

coupled interaction, superradiant scaling of both the fast
slow modes is observed. Note that the slow mode coup
results are almost coincident with those of the single s
mode in this region. This has similarities with the evoluti
of superradiant pulses in atomic systems, where for su
ciently short systems, the counterpropagating radia
pulses evolve independently@31#.

2. Long pulses and µ suppression of the slow mode

Long electron pulses give rise to steady state evolu
within the main body of the pulse and possible strong sup
radiant evolution in the slippage regions, as was discusse
Sec. V B 2 for the single mode interaction. Inspection of F
3, however, shows that for a coupled interaction it is n
possible for the steady state radiation to propagate
vacuum without first propagating through a slippage reg
of the electron pulse. Hence the radiation propagating
vacuum does not necessarily describe the history of
coupled steady state evolution, as occurred for the sin
mode as described in Sec. V B 2.

A typical plot of the intensities of the fast and slow mo
coupled interaction for a long electron pulsel̄ ef

5100 is
shown in Fig. 16. The fast mode radiation@Fig. 16~a!# has a
peak in the intensity atz̄1 f

'110 which is higher than ex
pected for the steady state coupled interaction. This may
se

rt
is-
r-

of
e
t-
e
y

d
d

-
n

n
r-
in
.
t
to
n
in
e
le

be

explained by the emission process in the slow mode slipp
region, including enhanced emission of the fast mode. T
region initially evolves in a similar way to that of a short
electron pulse as described in Sec. V C 1, and we obser
fast mode pulse which is of similar intensity to the maximu
of Fig. 15~a!. The analysis of Sec. V C 1 discussed the s
sitivity of this emission of the fast mode to the initial field
uĀf 0

u anduĀs0
u. As there, if the latter field is too large, it ha

been observed that the fast mode pulse of Fig. 16~a! may not
become dominant before the slow mode reaches saturat

In the fast mode slippage region there is no enhan
emission of the slow mode, and this region evolves simila
to that of the coupled steady state, which dominates any
mode superradiant emission. Hence as with the single m
evolution, the slow mode radiation propagating into vacu
describes the history of its evolution. Figure 16~b! shows
strong superradiant emission of the slow mode atz̄1 f

525,
with a peak intensity greater than that of the steady s
saturation value. It can be seen by comparing Figs. 16~a! and
16~b! that, except for the fast mode emission from the sl
mode slippage region, the slow mode clearly dominates
interaction and the fast mode does not exhibit any stro
superradiant behavior.

For a coupled interaction, it is possible to use t
m-suppression condition~10! to suppress the exponentia
growth of the slow mode. An identical set of parameters
those of Fig. 16 are used, with the exception that the de
tion parameter is set tom f50.65. It is observed in Figs. 17~a!
and 17~b! that the slow mode is suppressed and the fast m
is now dominant. Again, as with the one mode case, them
suppression does not apply in the slow mode slippage re
where superradiant evolution of the slow mode is observ
but is significantly reduced. As with suppression of t
single slow mode of Sec. V B 2, the reduced slow mo
emission may be attributed not only to the increase in
depletion parameter, but also to the expansion of the reg
of nonexponential interaction defined by Eq.~29!. The for-
mation of the strong superradiant spike of the fast mode
seen atz̄1 f

510. The spike has a peak intensity greater th
that of the steady state saturation value, and is amplified
propagates through the electron pulse in the direction
positive z̄1 f

.

VI. CONCLUSIONS

We have presented a detailed analytical and numer
investigation of CRM’s operating in the pulsed amplifier r
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FIG. 17. Demonstration of slow modem sup-
pression within the steady state region of the lo
pulse.~a! Fast mode.~b! Slow mode.e354, V

52.0125, l̄ ef
5100, r f50.1, m f50.65, Āf 0

51025, Ās051025, and z̄f532.
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gime which has yielded significant results. Superradi
emission has been demonstrated, and it was shown tha
general, the coupled interaction between both resonant
quencies must be taken into account. Both an analytic lin
and a nonlinear numerical analysis of the equations of e
lution were given, the former suggesting two possible me
ods of suppressing the lower frequency interaction which
the steady state, usually dominates the interaction. A num
cal solution of the evolution equations showed that these
methods,m suppression and pulse suppression, extend
the nonlinear regime of evolution. Pulse suppression m
occur for short electron pulse lengths. Nonlinear evolut
enhances the effects of pulse suppression predicted by
linear analysis, so that the higher frequency interaction do
nates. Another feature of the interaction with short elect
ry

l.

,
s.

ys

e-

J.

S

s

s
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pulses is weak superradiant evolution at both of the reson
frequencies. For long pulses a strong superradiant evolu
of the radiation is observed in the simulations.

The model presented here has suggested regimes o
eration of the CRM with significant practical potential, i.e
the generation of short pulses of high-frequency, high-pow
microwave radiation. Further work is now required to exte
the model to include effects such as energy spread and sp
charge in the electron beam, and waveguide dispersion.
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